We describe genetic, molecular and taxonomic characteristics of the yeast Hansenula anomala. Pulsed-field gel electrophoresis of chromosomal DNAs from 19 H. anomala strains and related species indicated that H. anomala had a clearly different karyotype. Chromosome length polymorphism of the H. anomala strains was independent of their geographic origin and source of isolation. The strains were classified into four groups of similar karyotypes and one strain showed a unique profile. The sizes of chromosomes ranged from 850 to 3500 kb in different strains. The haploid chromosome number of H. anomala is at least nine. We have found RAPD primers discriminating at both the species and strain levels. All the primers tested except the M13 core sequence generated unique patterns with most strains. The results indicate the usefulness of PCR analysis with primer M13 for identification of the H. anomala species. Screening of the CBS (Utrecht) collection strains of H. anomala showed that they are rather difficult objects for genetic hybridization analysis. The strains have low fertility, viz. very poor sporulation, low mating type activities and, as a rule, nonviable ascospores. The majority of the hybrids obtained are polyploid, probably tetraploid, as judged by the segregation of control auxotrophic markers. Nevertheless, some monosporic cultures of the strains studied, including the biocontrol yeast J121, formed diploid hybrids with regular meiotic segregation of control auxotrophic markers. As a rule, H. anomala isolates are homothallic, showing delayed self-diploidization. Rare stable heterothallic strains of H. anomala also occur.
Read full abstract