BackgroundMosaic chromosomal alterations are implicated in neuropsychiatric disorders, but the contribution to schizophrenia (SCZ) risk for somatic copy number variations (sCNVs) emerging in early developmental stages has not been fully established. MethodsWe analyzed blood-derived genotype arrays from 9715 patients with SCZ and 28,822 control participants of Chinese descent using a computational tool (MoChA) based on long-range chromosomal information to detect mosaic chromosomal alterations. We focused on probable early developmental sCNVs through stringent filtering. We assessed the burden of sCNVs across varying cell fraction cutoffs, as well as the frequency with which genes were involved in sCNVs. We integrated this data with the PGC (Psychiatric Genomics Consortium) dataset, which comprises 12,834 SCZ cases and 11,648 controls of European descent, and complemented it with genotyping data from postmortem brain tissue of 936 participants (449 cases and 487 controls). ResultsPatients with SCZ had a significantly higher somatic losses detection rate than control participants (1.00% vs. 0.52%; odds ratio = 1.91; 95% CI, 1.47–2.49; two-sided Fisher’s exact test, p = 1.49 × 10−6). Further analysis indicated that the odds ratios escalated proportionately (from 1.91 to 2.78) with the increment in cell fraction cutoffs. Recurrent sCNVs associated with SCZ (odds ratio > 8; Fisher’s exact test, p < .05) were identified, including notable regions at 10q21.1 (ZWINT), 3q26.1 (SLITRK3), 1q31.1 (BRINP3) and 12q21.31-21.32 (MGAT4C and NTS) in the Chinese cohort, and some regions were validated with PGC data. Cross-tissue validation pinpointed somatic losses at loci like 1p35.3-35.2 and 19p13.3-13.2. ConclusionsThe study highlights the significant impact of mosaic chromosomal alterations on SCZ, suggesting their pivotal role in the disorder’s genetic etiology.
Read full abstract