The interaction between forests and precipitation plays a crucial role in the material cycling of forest ecosystems. Atmospheric deposition and rainfall leaching promote the transfer of heavy metals to the forest floor, while canopy exchange may potentially slow this process. Therefore, studying heavy metal fluxes and their influencing factors, along with canopy rainfall partitioning, is essential for understanding forest material cycling. We conducted a year-long experiment to examine the dynamics of chromium (Cr), cadmium (Cd), and lead (Pb) concentrations and fluxes in four types of forests (Cunninghamia lanceolata plantations, Castanopsis carlesii plantations, Cas. carlesii natural forests, and Cas. carlesii secondary forests) located in the subtropical regions of southeast China. Results showed that (1) the annual mean concentrations of Cr, Cd, and Pb were 167.6, 13.8, and 6180.5 μg L−1 in the throughfall and 204.7, 28.4, and 2251.1 μg L−1 in the stemflow, respectively, and the annual fluxes of Cr, Cd, and Pb through throughfall were 29.3, 2.4, and 847.7 g ha−1, respectively, and were 1.7, 0.2, and 12.7 g ha−1 through stemflow, respectively; (2) the concentrations of these heavy metals associated with throughfall did not vary between forest types, but their fluxes were highest in Cas. carlesii natural forests; (3) Cr concentration and flux were higher during the rainy than dry seasons, while Cd and Pb concentrations and fluxes showed an opposite trend. Overall, our results indicate that the fluxes of heavy metals along with rainfall partitioning were highest in natural forests and are primarily controlled by meteorological factors, indicating that the conversion of natural forests to other forest types will substantially change the fluxes of heavy metals along with hydrological processes. These results will contribute to a better understanding of the natural fluxes of heavy metals in forest ecosystems and are valuable for sustainable forest management, particularly in the context of forest type transformation.
Read full abstract