Articular chondrocytes synthesize and maintain the avascular and aneural articular cartilage. In vivo these cells are surrounded by a 3D pericellular matrix (PCM) containing predominantly collagen VI. The PCM protects chondrocytes and facilitates mechanotransduction, and PCM stiffness is critical in transmitting biomechanical signals to chondrocytes. Various culture systems with different hydrogels have been used to encapsulate chondrocytes for 3D culture, but many lack either the PCM or the in vivo stiffness of the cartilage matrix. Here, we demonstrate that primary chondrocytes cultured in alginate will form a pericellular matrix and display a phenotype similar to in vivo conditions. We found that primary human and bovine chondrocytes, when cultured in alginate beads with addition of sodium L-ascorbate for 7 days, had a pronounced PCM, retained their phenotype, and synthesized both collagens VI and II. This novel culture system enables alginate-encapsulated chondrocytes to develop a robust PCM thereby creating a model system to study mechanotransduction. We also observed distinct compression-induced changes in metabolomic profiles between the monolayer-agarose and alginate-released agarose-embedded chondrocytes indicating physiological changes in cell metabolism. Our data suggest that 3D preculture of chondrocytes in alginate before encapsulation in physiologically-stiff agarose leads to a pronounced development of pericellular matrix that is sustained in the presence of ascorbate. This novel model can be useful in studying the mechanism by which chondrocytes respond to cyclical compression and other types of loading simulating in vivo physiological conditions.
Read full abstract