Over a 1-year period, bi-monthly estuarine surface water and plankton samples (63-200 and > 200 μm fractions) were assayed by polymerase chain reaction for the prevalence of total Vibrio parahaemolyticus, V. vulnificus and V. cholerae and select genes associated with clinical strains found in each species. Neither temperature nor plankton abundance was a significant correlate of total V. parahaemolyticus; however, the prevalence of genes commonly associated with clinical strains (trh, tdh, ORF8) increased with temperature and copepod abundance (P < 0.05). The prevalence of total V. vulnificus and the siderophore-related viuB gene also increased with temperature and copepod and decapod abundance (P < 0.001). Temperature and copepod abundance also covaried with the prevalence of V. cholerae (P < 0.05), but there was no significant relationship with ctxA or other genes commonly found in clinical strains. Results show that genes commonly associated with clinical Vibrio strains were more frequently detected in association with chitinous plankton. We conclude that V. parahaemolyticus, V. vulnificus, V. cholerae and subpopulations that harbour genes common to clinical strains respond distinctly to seasonal changes in temperature as well as shifts in the taxonomic composition of discrete plankton fractions.