BackgroundLong-term severe cholangitis can lead to dense adhesions and increased fragility of the bile duct, complicating surgical procedures and elevating operative risk in children with pancreaticobiliary maljunction (PBM). Consequently, preoperative diagnosis of moderate-to-severe chronic cholangitis is essential for guiding treatment strategies and surgical planning. This study aimed to develop and validate a deep learning radiomics nomogram (DLRN) based on contrast-enhanced CT images and clinical characteristics to preoperatively identify moderate-to-severe chronic cholangitis in children with PBM.MethodsA total of 323 pediatric patients with PBM who underwent surgery were retrospectively enrolled from three centers, and divided into a training cohort (n = 153), an internal validation cohort (IVC, n = 67), and two external test cohorts (ETC1, n = 58; ETC2, n = 45). Chronic cholangitis severity was determined by postoperative pathology. Handcrafted radiomics features and deep learning (DL) radiomics features, extracted using transfer learning with the ResNet50 architecture, were obtained from portal venous-phase CT images. Multivariable logistic regression was used to establish the DLRN, integrating significant clinical factors with handcrafted and DL radiomics signatures. The diagnostic performances were evaluated in terms of discrimination, calibration, and clinical usefulness.ResultsBiliary stones and peribiliary fluid collection were selected as important clinical factors. 5 handcrafted and 5 DL features were retained to build the two radiomics signatures, respectively. The integrated DLRN achieved satisfactory performance, achieving area under the curve (AUC) values of 0.913 (95% CI, 0.834–0.993), 0.916 (95% CI, 0.845–0.987), and 0.895 (95% CI, 0.801–0.989) in the IVC, and two ETCs, respectively. In comparison, the clinical model, handcrafted signature, and DL signature had AUC ranges of 0.654–0.705, 0.823–0.857, and 0.840–0.872 across the same cohorts. The DLRN outperformed single-modality clinical, handcrafted radiomics, and DL radiomics models, with all integrated discrimination improvement values > 0 and P < 0.05. The Hosmer–Lemeshow test and calibration curves showed good consistency of the DLRN (P > 0.05), and the decision curve analysis and clinical impact curve further confirmed its clinical utility.ConclusionsThe integrated DLRN can be a useful and non-invasive tool for preoperatively identifying moderate-to-severe chronic cholangitis in children with PBM, potentially enhancing clinical decision-making and personalized management strategies.
Read full abstract