Photosensitization was developed as a risk-reduction strategy against the contamination by environmental mold spores during the bread cooling phase. Two food-grade photosensitizers -chlorophyllin (CHL) and riboflavin (RBF), were used to evaluate the effect of visible (blue) LED illumination against three common bread spoilage molds. Aided by CHL, 405 nm LEDs inactivated Rhizopus stolonifer and Penicillium expansum by 77.4 ± 3.3% and 52.1 ± 7.3% respectively in 30 min on dichloran rose bengal chloramphenicol agar. These reductions were much higher than the corresponding reductions observed with food-grade RBF and 445 nm LEDs - 22.8 ± 3.2% and 45.5 ± 5.9%, indicating that CHL-based photosensitization was more effective as an intervention than RBF-based photosensitization. When the three molds were illuminated on bread after spraying CHL and spot-inoculation, their populations were reduced by 51–58%. CHL-based photosensitization was observed to retain the texture and moisture of the bread samples, but had a statistically significant impact on their colour. The results of this study suggest that CHL-based photosensitization can be developed as a risk reduction method to prevent the spoilage of bread.
Read full abstract