Homogeneous functionalization of cellulose with chloroacetyl chloride (CAC), 2-bromoisobutyryl bromide (BrBiB), and 2-chloro-2-phenylacetyl chloride (CPAC) was performed in ionic liquid to evaluate the effect of the molecular structure of the reagents on the reactivity of the cellulosic hydroxyl groups. The results showed that the reaction was very selective for the less hindered C6-OH group, but the substitution of the secondary OH group still occurred, which indicated that the acylation of cellulose was only partly regioselective. The reaction extent and regioselectivity of the cellulosic hydroxyl groups partly depended on the molecular structure of the acylating agents. The reaction rate of the CAC was much faster than the relatively bulky BrBiB and CPAC, but the bulky acylating agents showed a higher C6-OH selectivity. Moreover, the BrBiB was less reactive than the CPAC, although they showed the same regioselectivity for the three hydroxyl groups. The acylation decreased the thermal stability of the cellulose, which decreased further as the bulk of the substituted groups increased.