Phenolic compounds usually produce coupling phenols during the upstream oxidation treatment of water, but the disinfection by-products (DBPs) of coupling phenols in the subsequent disinfection process have been overlooked. Herein, we demonstrated the generation and higher toxicity of these DBPs. In Songhua River water, 0.355ng/L 4-(4-bromophenoxy)phenol and 122.67ng/L phenol were detected. Pre-oxidation with K2FeO4 and KMnO4 resulted in the formation of 0.68ng/L and 0.506ng/L 4-(4-iodophenoxy)phenol in subsequent disinfection, respectively, which were 2-3 times that without pre-oxidation. Coupling of phenolic compounds during pre-oxidation and then halogenated during chlorination was shown to be the main pathway for the generation of coupling phenolic DBPs. The maximum rate constants for the reactions of hypochlorous acid with phenol and its coupling products (4-phenoxyphenol, 2,2’-biphenol, and [1,1’-biphenyl]-2,4’-diol) were 115.61M-1s-1, 65.85M-1s-1, 143.13M-1s-1, and 212.52M-1s-1, respectively, with 2,2’-biphenol and [1,1’-biphenyl]-2,4’-diol breaking through lower energy barriers and releasing more energy than phenol. This indicated coupling phenols have a higher potential to form DBPs. Additionally, coupling phenolic DBPs (4-(4-chlorophenoxy)phenol, 4-(4-bromophenoxy)phenol, and 4-(4-iodophenoxy)phenol) was 1-3 orders of magnitude more toxic than their precursors (4-phenoxyphenol, 2,2’-biphenol, [1,1’-biphenyl]-2,4’-diol, and phenol) and uncoupled DBPs (4-iodophenol). Therefore, the formation and hazards of coupling phenolic DBPs require more attention.
Read full abstract