The ∼1.2 km long and ∼250 m wide Chikkasiddavanahalli (C.S. Halli) hill range consists of mixed sulphidic-oxide banded iron formations (BIFs) and Fe-rich phyllites (±carbonaceous), which overlie carbonated schistose and massive meta volcanics. In stratigraphic succession, the lithologies represent the Ingaldhal Formation and are an integral part of the Chitradurga schist belt in the Western Dharwar Craton. The general strike at C.S. Halli varies from N–S to 340° with vertical to steep dips towards east and west. The sulphides, oxides and silicates exhibit intergrowth replacement textures developed during regional greenschist- and amphibolites- facies metamorphism. The BIFs show mesobands of recrystallised cherts and iron sulphides such as pyrite, arsenopyrite, and silicates such as subordinate grunerite, hornblende, chlorite, muscovite, actinolite and minor carbonates such as ankerite, calcite and magnesian siderite. Chemical data indicate depletion in Ti, Mn, Co, Cu, Cr and Ni in these iron formations. Most chondrite normalized REE patterns of the iron formation show moderate LREE and HREE enrichment coupled with strong positive Eu anomaly; the mineralized portions exhibit characteristic negative Ce and Eu anomalies (Eu/Eu∗ 0.21 to 3.00). The total REE abundance varies, correlates well with the iron contents of the BIFs, and similar to those exhibited by hydrothermal plumes [Chown, E.H., Dah, E.N., Mueller, W.G., 2000. The relation between iron formation and low temperature alteration in a Archean volcanic environment. Precambrian Research 101, 263–275]. Trace and REE data suggest that primary mantle-derived hydrothermal solutions were added to the pore fluids of sediments of the Chitradurga basin and supplied chemical constituents such as FeO, SiO2 and REE. Oxidation of FeO to Fe2O3 was caused by the photosynthesis of primitive stromatolite-building cyanobacteria. Geochemical data suggest a model involving epigenetic gold mineralisation in close association with shear zone deformation, quartz-calcite vein activity and sulphidation in the mixed sulphide oxide facies BIF and associated iron phyllites in the C.S. Halli area, Western Dharwar Craton, India.
Read full abstract