Curcumin (CUR) is among the most appropriate and natural-based anticancer drugs that can be applied effectively treat different classes of cancers. However, CUR suffers from a low half-life and stability in the body, which has restricted the efficacy of its delivery applications. This study is dedicated to introducing the pH-sensitive nanocomposite of chitosan (CS)/gelatin (GE)/carbon quantum dots (CQDs) as an applicable nanocarrier for enhancing CUR half-life and its delivery restrictions. The CS/GE hydrogel was synthesized by the physical crosslinking method, which improves the biocompatibility of this hydrogel. Moreover, the water-in-oil-in-water (W/O/W) double emulsion approach is involved in fabricating the drug-loaded CS/GE/CQDs@CUR nanocomposite. Afterward, drug encapsulation (EE) and loading efficiencies (LE) have been determined. Furthermore, FTIR and XRD assessments were performed to confirm the CUR incorporation into the prepared nanocarrier and crystalline features of the nanoparticles. Then, by employing Zeta potential and dynamic light scattering (DLS) analysis, the size distribution and stability of the drug-loaded nanocomposites have been assessed, which indicated monodisperse and stable nanoparticles. Furthermore, field emission scanning electron microscopy (FE-SEM) was utilized that confirmed the homogeneous distribution of the nanoparticles with smooth and quite spherical structures. In vitro drug release pattern was studied and the kinetic analysis was performed using a curve fitting technique to determine the governing release mechanism at both acidic pH and physiological conditions. The obtained outcomes from release data revealed a controlled release behavior with a 22-hour half-life, while the EE% and EL% were acquired at 46.75 % and 87.5 %, respectively. In addition, the MTT assay has been carried out on U-87 MG cell lines to evaluate the cytotoxicity of the nanocomposite. The findings showed that the fabricated nanocomposite of CS/GE/CQDs can be assumed as a biocompatible CUR nanocarrier, while the drug-loaded nanocomposite of CS/GE/CQDs@CUR showed enhanced cytotoxicity compared to the pure CUR. Based on the obtained results, this study suggests the CS/GE/CQDs nanocomposite as a biocompatible and potential nanocarrier for ameliorating CUR delivery restrictions to treat brain cancers.