Vinblastine (VBL) is a major chemotherapeutic drug; however, in some cases, it may cause severe side effects in patients with cancer. Designing a novel VBL pharmaceutical formulation is a crucial and emerging concern among researchers for reducing the use of VBL. This study developed a stimuli-responsive controlled VBL drug release system from magnetically sensitive chitosan capsules. A magnetically responsive controlled drug release system was designed by embedding superparamagnetic iron oxide (SPIO) nanoparticles (NPs) in a chitosan matrix and an external magnet. In addition, droplet microfluidics, which is a novel technique for producing polymer spheres, was used for manufacturing monodispersed chitosan microparticles. The prepared VBL and SPIO NPs-loaded chitosan microparticles were characterized and analyzed using Fourier transform infrared spectroscopy, transmission electron microscopy, scanning electron microscopy, a superconducting quantum interference device, and a biocompatibility test. The drug encapsulation efficiency was 67%–69%. The in vitro drug release test indicated that the VBL could be 100% released from chitosan composite particles in 80–130 min under magnetic stimulation. The pulsatile magnetically triggered tests showed individual and distinctive controlled release patterns. Thus, the timing and dose of VBL release was controllable by an external magnet. The results presume that using a magnetically responsive controlled drug release system offers a valuable opportunity for VBL drug delivery, where the delivery system is an active participant, rather than a passive vehicle, in the optimization of cancer treatment. The proposed actively targeted magnetic drug delivery system offers many advantages over conventional drug delivery systems by improving the precision and timing of drug release, easy operation, and higher compliance for pharmaceutical applications.