One of the hallmarks of Alzheimer's Disease (AD) is the anomalous binding involving amyloid-β (Aβ) peptide and metal ions, such as copper, formed through histidine (His) residues. Herein, adsorption experiments were performed to test the in vitro ability of chitosan to uptake copper ions in the presence of histidine. The characterization of the beads was assessed before and after the adsorption process by scanning electron microscope, X-ray diffraction and Fourier-transform infrared spectroscopy. Amino acid functionalization of chitosan-based beads promoted an increase in the copper ions adsorption capacity (2.47 mmol of Cu(II)/gram of adsorbent). Nevertheless, depending on the order of addition of histidine to the system, different adsorption behaviors were observed. The kinetics showed that, once the Cu(II)-His bond was established, functionalized beads were less efficient to capture Cu(II), which promoted a decrease in the overall adsorption capacity. However, when chitosan and histidine were simultaneously added to the Cu(II) solution, there was no decrease in adsorption capacity. To sum up, chitosan-based materials are an interesting model to provide a better understanding on the biomolecules‑copper interactions that occur in AD, as well as a possible chelating agent that can interfere in the bonds between Aβ residues and copper ions.