The spectra of pentaquarks, some of them observed recently, are discussed within the topological soliton model and compared with the simplified quark picture. The results obtained within the chiral soliton model depend to some extent on the quantization scheme: rigid rotator, soft rotator, or bound state model. The similarity of the spectra of baryon resonances obtained within the quark model and the chiral soliton model is pointed out, although certain differences take place as well, which require careful interpretation. In particular, considerable variation of the strange antiquark mass in different SU(3) multiplets of pentaquarks is required to fit their spectra obtained from chiral solitons. Certain difference in the masses of “good” and “bad” diquarks is required as well, in qualitative agreement with previously made estimates. The partners of exotic states with different values of spin which belong to higher SU(3) multiplets have energy considerably higher than the states with the lowest spin, and this could be a point where the difference from simple quark models is striking. The antiflavor excitation energies for multibaryons are estimated as well, and the binding energies of gJ-hypernuclei and anticharm (antibeauty) hypernuclei are presented for several baryon numbers. Some deficiencies are pointed out in the arguments in the literature against the validity of the chiral soliton approach and/or the SU(3) quantization models.
Read full abstract