A detection of B-mode polarization of the Cosmic Microwave Background (CMB) anisotropies would confirm the presence of a primordial gravitational wave background (GWB). In the inflation paradigm this would be an unprecedented probe of the energy scale of inflation as it is directly proportional to the power spectrum of the GWB. However, similar tensor perturbations can be produced by the matter fields present during inflation, breaking this simple relationship. It is therefore important to be able to distinguish between different generation mechanisms of the GWB. In this paper, we analyse the detectability of a new axion-SU(2) gauge field model using its chiral, scale-dependent tensor spectrum. We forecast the detectability of the resulting CMB TB and EB cross-correlations by the LiteBIRD satellite, considering the effects of residual foregrounds, gravitational lensing, and for the first time assess the ability of such an experiment to jointly detect primordial TB and EB spectra and self-calibrate its polarimeter. We find that LiteBIRD will be able to detect the chiral signal for $r_*>0.03$ with $r_*$ denoting the tensor-to-scalar ratio at the peak scale, and that the maximum signal-to-noise for $r_*<0.07$ is $\sim 2$. We go on to consider an advanced stage of a LISA-like mission, and find that such experiments would complement CMB observations by providing sensitivity to GWB chirality on scales inaccessible to the CMB. We conclude that in order to use the CMB to distinguish this model from a conventional vacuum fluctuation model two-point statistics provide some power, but to achieve high statistical significance we would require higher order statistics which take advantage of the model's non-Gaussianity. On the other hand, in the case of a spectrum peaked at very small scales, inaccessible to the CMB, a highly significant detection could be made using space-based laser interferometers.
Read full abstract