With the judicious selection of a designed polycarboxylate derived from L-phenylalanine, (S)-5-(((1-carboxy-2-phenylethyl)amino)methyl)isophthalic acid (H3L), a novel homochiral metal-organic framework decorated with a free carboxyl, {[Cu2(HL)2(bipy)]∙2H2O}n (Cu-MOF), has been designed and synthesized in a solvothermal process. The result of single crystal X-ray diffraction analysis showed that Cu-MOF had the character of a three-dimensional structure with helical chirality. As we expected, in Cu-MOF, one accessible free carboxylic acid group on H3L pointed toward the spiral channels, and the other two –COOH groups were utilized in bonding. The enantioseparation performance of Cu-MOF was thoroughly investigated and the results showed that Cu-MOF can specifically recognize S-1-(1-naphthyl) ethanol (S-NE) with enantiomeric excess (ee) value of 99.35 %, which was much higher than the other three racemates. The appropriate size together with suitable interaction sites played an important role in enantioseparations. Inspired by the excellent chiral recognition effects towards S-NE, the chiral recognition mechanism was experimentally clarified. A fully agreement observed in 13C CP MAS NMR analysis as well as the X-ray photoelectron spectroscopy (XPS) determination revealed that a strong hydrogen bonding interaction forces existed between the hydroxyl of the optical S-NE and the decorated –COOH in the chiral framework. The control experiment further identified the decisive role of the uncoordinated carboxyl group in Cu-MOF. In addition, the strong intermolecular off-set π-π interactions between the phenyl ring involved with the coordinated COO− groups in Cu-MOF and the naphthyl ring of S-NE, was the another important factor for the specifical enantioseparation of S-enantiomer. On the basis of strong intermolecular hydrogen bonding, NE racemates were enantioselective discriminated and enantiomeric purity can be determined by means of Raman scattering spectroscopy.
Read full abstract