Heavy metal pollution in metropolitan soils poses significant risks to human health and the entire ecosystem. Effective mitigation strategies and technologies are crucial for addressing these environmental issues. Fast-growing trees are an essential part of phytoremediation projects all over the world and provide long-term ecological benefits to mankind. This study assessed the lead tolerance and phytoremediation potential of a fast-growing soapberry tree species (Sapindus mukorossi) in moderately contaminated soil. Two independent experiments were conducted to assess its tolerance at (i) germination level and (ii) prolonged growth stage. In the germination experiments, seeds were exposed to lead (II) nitrate Pb (NO₃)₂ at various concentrations (0, 5, 10, 20, 50, 100, 200, 300, 400 and 500 μM) for 120 days. Results showed significant differences in germination time, germination index, seedling vigor index, energy of germination, final germination, germination inhibition, seedling height and root/shoot weight compared to the control experiments. In the prolonged growth experiments, seedlings were grown for six months in soils amended/spiked with different Pb concentrations (T0 = 0, T1 = 20, T2 = 50, T3 = 100, T4 = 150 and T5 = 200 mg kg−1 soil) and their biomass was determined. The highest biomass achieved in six months (T0: 12.62 g plant−1), followed by (T1: 12.33 g plant−1), (T2: 12.42 g plant−1), (T3: 11.86 g plant−1), (T4: 10.86 g plant−1) and (T5: 10.06 g plant−1) respectively. S. mukorossi showed no visible signs of Pb toxicity over a six-month period. During six months of exposure, the total Pb content in S. mucrossi tissues were classified as roots > leaves > stems. The highest cumulative absorption of Pb occurred between the fourth and fifth months of exposure. Maximum transfer factor (TF) was detected during the fourth month ranging from 0.888 to 1.012 for the different Pb concentrations. Furthermore, the growth behavior, lead accumulation, bioconcentration factors (BCF) and tolerance index (TI) indicated that S. mucrossi may tolerate moderate Pb concentrations for longer periods. These findings suggest that S. mukorossi may be deployed for long-term phytoremediation coupled with urban forest applications in the future.