To gain a deeper understanding of the current status of research on Traditional Chinese Medicine (TCM) and nanoparticles, we conducted a bibliometric study. We conducted a literature search in the Web of Science (WOS) for publications related to TCM and nanoparticles from 1992 to 2023. The data, including countries of publication, research institutions, journals, citations, and keywords, were analyzed using the Bibliometrix R-4.0 software package. We performed an analysis to identify the co-occurrence of keywords in the documents including their titles and abstracts. From 2005 to 2023, a total of 309 publications were included, with an average annual growth rate of 4.25%. The majority of these publications were published in Q1 journals (72, 47.06%) and Q2 journals (45, 29.41%). Among the 309 publications, 22 articles (7.12%) had an impact factor greater than 10, while 78 articles (25.24%) had an impact factor greater than 5. The analysis of international collaboration networks revealed limited international cooperation, with most collaborations occurring between institutions in China, the United States, and Australia. These 309 publications involved a total of 438 research institutions, with Chinese research institutions being the most prolific contributors. In this study, a total of 309 publications were included, comprising 1142 author keywords and 1175 keywords plus. Factor analysis of the 1175 keywords plus revealed that they could be grouped into five categories: one category included terms such as "oxide" and "zinc," another category included terms like "lipid" and "acid," a third category included terms such as "improve" and "enhance," a fourth category included terms like "silica" and "mesoporous," and the fifth category included terms like "PLGA" and "immune." Research on nanoparticles in TCM has been gradually gaining popularity. Currently, most of the research in this field is conducted in China, with limited international collaboration. The majority of TCM nanoparticle research focuses on individual herbal compounds, while research on nanoparticle formulations of traditional herbal prescriptions is relatively scarce.
Read full abstract