The rapidly growing market of biologics including monoclonal antibodies has stimulated the need to improve biomanufacturing processes including mammalian host systems such as Chinese Hamster Ovary (CHO) cells. Cell culture media formulations continue to be enhanced to enable intensified cell culture processes and optimize cell culture performance. Amino acids, major components of cell culture media, are consumed in large amounts by CHO cells. Due to their low solubility and poor stability, certain amino acids including tyrosine, leucine, and phenylalanine can pose major challenges leading to suboptimal bioprocess performance. Dipeptides have the potential to replace amino acids in culture media. However, very little is known about the cleavage, uptake, and utilization kinetics of dipeptides in CHO cell cultures. In this study, replacing amino acids, including leucine and tyrosine by their respective dipeptides including but not limited to Ala-Leu and Gly-Tyr, supported similar cell growth, antibody production, and lactate profiles. Using 13C labeling techniques and spent media studies, dipeptides were shown to undergo both intracellular and extracellular cleavage in cultures. Extracellular cleavage increased with the culture duration, indicating cleavage by host cell proteins that are likely secreted and accumulate in cell culture over time. A kinetic model was built and for the first time, integrated with 13C labeling experiments to estimate dipeptide utilization rates, in CHO cell cultures. Dipeptides with alanine at the N-terminus had a higher utilization rate than dipeptides with alanine at the C-terminus and dipeptides with glycine instead of alanine at N-terminus. Simultaneous supplementation of more than one dipeptide in culture led to reduction in individual dipeptide utilization rates indicating that dipeptides compete for the same cleavage enzymes, transporters, or both. Dipeptide utilization rates in culture and cleavage rates in cell-free experiments appeared to follow Michaelis-Menten kinetics, reaching a maximum at higher dipeptide concentrations. Dipeptide utilization behavior was found to be similar in cell-free and cell culture environments, paving the way for future testing approaches for dipeptides in cell-free environments prior to use in large-scale bioreactors. Thus, this study provides a deeper understanding of the fate of dipeptides in CHO cell cultures through an integration of cell culture, 13C labeling, and kinetic modeling approaches providing insights in how to best use dipeptides in media formulations for robust and optimal mammalian cell culture performance.