Antisense oligomers are potential pharmaceutical and radiopharmaceutical agents that can be used to modulate and image gene expression. Progress with in vivogene targeting using antisense-based therapeutics has been slower than expected during the last decade, owing to poor trans-cellular delivery of antisense agents. This chapter suggests that if antisense pharmacology is merged with drug targeting technology, then membrane barriers can be circumvented and antisense agents can be delivered to tissues in vivo. Without the application of drug targeting, the likelihood of success for an antisense drug development program is low, particularly for the brain which is protected by the blood-brain barrier (BBB). Among the different classes of antisense agents, peptide nucleic acids (PNA) present advantages for in vivoapplications over conventional and modified oligodeoxynucleotides (ODN), including phosphorothioates (PS)-ODN. Some advantages of PNAs include their electrically neutral backbone, low toxicity to neural cells, resistance to nucleases and peptidases, and lack of binding to plasma proteins. PNAs are poorly transported through cellular membranes, however, including the BBB and the brain cell membrane (BCM). Because the mRNA target for the antisense agent lies within the cytosol of the target cell, the BBB and the BCM must be circumvented in vivo, which ispossible with the use of chimeric peptide drug targeting technology. Chimeric peptides are formed by conjugation of a non-transportable drug, such as a PNA, to a drug delivery vector. The vector undergoes receptor-mediated transcytosis (RMT) through the BBB and receptor-mediated endocytosis through the BCM in vivo. When labeled with a radioisotope (e.g., 125I or 111In), the antisense chimeric peptide provides imaging of gene expressionin the brain in vivoin a sequence-specific manner. Further development of antisense radiopharmaceutical agents may allow for in vivoimaging of genes in pathological states, and may provide tools for the analysis of novel genes with functional genomics.