Despite the initial success of single-targeted chimeric-antigen receptor (CAR) T-cell therapy in hematological malignancies, its long-term effectiveness is often hindered by antigen heterogeneity and escape. As a result, there is a growing interest in cell therapies targeting multiple antigens (≥2). However, the dose-exposure-response relationship and specific factors influencing the pharmacology of dual-targeted CAR-T-cell therapy remain unclear. In this study, we have developed a multiscale cellular kinetic-pharmacodynamic (CK-PD) model using case studies from CD19/CD22 and GPRC5D/BCMA autologous CAR-Ts. Initially, an invitro tumor-killing model characterized the impact of individual binder affinities and their contribution to overall potency across varying (1) effector: target (ET) ratios and (2) tumor-associated antigen (TAA) expressing cell lines. Subsequently, an integrated CK-PD model was developed in pediatric acute lymphoblastic leukemia (ALL) patients, which accounted for CAR-T-cell product composition and relative antigen abundance in patients' tumor burden to characterize patient-level multiphasic cellular kinetics using multiple bioanalytical assays (e.g., flow and qPCR-based readouts). Global sensitivity analysis highlighted relative antigen expression, maximum killing rate constant, and CAR-T expansion rate constant as major determinants for observed exposure of dual-targeted CAR-T-cell therapy. This modeling framework could facilitate dose-optimization and construct refinement for dual-targeted bicistronic CAR-T-cell therapies, serving as a valuable tool for both forward and reverse translation in drug development.
Read full abstract