Improving chilling tolerance in cold-sensitive crops, e.g. tomato, requires knowledge of the early molecular response to low temperature in these under-studied species. To elucidate early responding processes and regulators, we captured the transcriptional response at 30minutes and 3hours in the shoots and at 3hours in the roots of tomato post-chilling from 24°C to 4°C. We used a pre-treatment control and a concurrent ambient temperature control to reveal that majority of the differential expression between cold and ambient conditions is due to severely compressed oscillation of a large set of diurnally regulated genes in both the shoots and roots. This compression happens within 30minutes of chilling, lasts for the duration of cold treatment, and is relieved within 3hours of return to ambient temperatures. Our study also shows that the canonical ICE1/CAMTA-to-CBF cold response pathway is active in the shoots, but not in the roots. Chilling stress induces synthesis of known cryoprotectants (trehalose and polyamines), in a CBF-independent manner, and induction of multiple genes encoding proteins of photosystems I and II. This study provides nuanced insights into the organ-specific response in a chilling sensitive plant, as well as the genes influenced by an interaction of chilling response and the circadian clock.
Read full abstract