Abstract

Chilling temperatures lead to numerous physiological disturbances in the cells of chilling-sensitive plants and result in chilling injury and death of tropical and subtropical plants such as watermelon. In this study, the possibility of cold stress tolerance enhancing of watermelon seedling (Citrullus lanatus) by exogenous application of Salicylic acid (SA) was investigated. SA was applied through seed soaking or foliar spray at 0, 0.5, 1 and 1.5 mM concentration. After SA treatment, the seedlings were subjected to chilling 5 h/day at 4°C for 5 days. Statistical analysis showed significant effects of the application methods and SA concentrations on plant growth parameters, photosynthetic pigments, electrolyte leakage, proline and chilling injury index. SA application improved growth parameters and increased chlorophyll content of watermelon seedling subjected to chilling stress and provided significant protection against chilling stress compared to non-SA-treated seedlings. Although two SA application methods improved chilling stress tolerance, seed soaking method provided better protection compared to foliar spray method. SA ameliorated the injury caused by chilling stress via inhibiting proline accumulation and leaf electrolyte leakage. The highest cold tolerance was obtained with 0.5 mM SA application. Results indicate that SA could be used effectively to protect watermelon seedling from damaging effects of chilling stress at the early stages of growth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.