Spasticity might affect gait in children with cerebral palsy. Quantifying its occurrence during locomotion is challenging. One approach is to determine kinematic stretch reflex thresholds, usually on the velocity, during passive assessment and to search for their exceedance during gait. These thresholds are determined through EMG-Onset detection algorithms, which are variable in performance and sensitive to noisy data, and can therefore lack consistency. This study aimed to evaluate the feasibility of determining the velocity stretch reflex threshold from maximal musculotendon acceleration. Eighteen children with CP were recruited and underwent clinical gait analysis and a full instrumented assessment of their soleus, gastrocnemius lateralis, semitendinosus, and rectus femoris spasticity, with EMG, kinematics, and applied forces being measured simultaneously. Using a subject-scaled musculoskeletal model, the acceleration-based stretch reflex velocity thresholds were determined and compared to those based on EMG-Onset determination. Their consistencies according to physiological criteria, i.e., if the timing of the threshold was between the beginning of the stretch and the spastic catch, were evaluated. Finally, two parameters designed to evaluate the occurrence of spasticity during gait, i.e., the proportion of the gait trial time with a gait velocity above the velocity threshold and the number of times the threshold was exceeded, were compared. The proposed method produces velocity stretch reflex thresholds close to the EMG-based ones. For all muscles, no statistical difference was found between the two parameters designed to evaluate the occurrence of spasticity during gait. Contrarily to the EMG-based methods, the proposed method always provides physiologically consistent values, with median electromechanical delays of between 50 and 130 ms. For all subjects, the semitendinosus velocity during gait usually exceeded its stretch reflex threshold, while it was less frequent for the three other muscles. We conclude that a velocity stretch reflex threshold, based on musculotendon acceleration, is a reliable substitute for EMG-based ones.
Read full abstract