Abstract

Fractional order Controllers have been used in several industrial cases to achieve better performance of the systems. This paper proposes a Fractional Order Proportional Integral Derivative (FOPID) controller. It is synthesized using Oustaloup approximation, and its parameters are tuned using the Genetic Algorithm (GA) optimization method. The aim is to minimize the error, the energy and the startup torques using two objective functions to improve the control performances and the robustness. The validity of the proposed controller is shown via simulation by controlling a two-link exoskeleton for children's gait rehabilitation, and the results are compared to an Integer order PID (IOPID) controller. Simulation results clearly indicate the superiority of the optimized FOPID in terms of trajectory tracking and the used torques. Moreover, the FOPID controller is tested with parameter uncertainties. Its robustness is proven against thigh and shank masses variation. Both controllers are simulated under the same frequency conditions using Simulink MATLAB R2018a.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.