The pegmatites at Pegmatite Peak (Bearpaw Mts., Montana) crystallized from an evolved fraction of nepheline-syenitic melt enriched in Sr, Ba, light REE and Nb. These rocks are composed essentially of microcline (up to 1.1 wt.% Na2O and 1.0 wt.% BaO), altered nepheline (replaced by analcime, zeolites, muscovite and gibbsite), and prismatic aegirine set in an aggregate of fibrous and radial aegirine. The early accessory assemblage includes Mg-Fe mica, rutile, zircon, titaniferous magnetite and thorite. Precipitation of these phases was followed by crystallization of a plethora of rare minerals enriched in Sr, Ba, light REE and Nb. Three major stages are distinguished in the evolution of this mineralization: primary, agpaitic and deuteric. Primary repositories for Sr, REE and Nb included betafite, loparite-(Ce), crichtonite and ilmenite-group minerals. Betafite (Ta-poor, REE- and Th-rich) is present in very minor amounts and did not contribute significantly to the sequestration of incompatible elements from the nepheline-syenite melt. Loparite-(Ce) evolved predominantly by depletion in Sr and Ca and enrichment in Nb, Na and REE, i.e. from strontian niobian loparite (up to 22.0 wt.% SrO) to niobian loparite (up to 17.6 wt.% Nb2O5). Crichtonite contains minor Na, Ca and K, lacks detectable Ba and REE, and is unusually enriched in Mn (7.0–13.6 wt.% MnO). The ilmenite-group minerals evolved from manganoan ilmenite to ferroan pyrophanite, and have relatively low Nb contents (≤ 0.9 wt.% Nb2O5). During the agpaitic stage, the major repositories for incompatible elements were silicates, including lamprophyllite, titanite and chevkinite-group minerals. Lamprophyllite is generally poor in Ba, and contains relatively minor Ca and K; only few small crystals exhibit rims of barytolamprophyllite with up to 26.3 wt.% BaO. Titanite is devoid of Al and depleted in Fe, but significantly enriched in Nb, Sr, REE and Na: up to 6.4, 4.5, 4.4. and 2.9 wt.% oxides, respectively. The chemical complexity of titanite suggests involvement of several substitution mechanisms: Ca2++Ti4+⇐Na1++Nb5+, Ca2 ⇐Sr2+, 2Ca2+⇐Na1++REE3+, and Ca t++OZ-~--Nal+ + (OH)1−. Chevkinite group minerals evolved from Sr-rich (strontiochevkinite) to REE-rich compositions [chevkinite-(Ce)]. Strontiochevkinite from Pegmatite Peak is compositionally similar to the type material from Sarambi, and has high ZrO2 (up to 7.8 wt.%) and low FeOT (≤ 2.5 wt.%) contents. During the final stages of formation of the pegmatites, a deuteric F-bearing fluid enriched in Sr and REE precipitated carbonates and minor phosphates confined to fractures and cavities in the rock. In this youngest assemblage of minerals, ancylite-(Ce) is the most common Sr-REE host. Some discrete crystals of ancylite show significant enrichment in Th (up to 6.0 wt.% ThO2). Ancylite-(Ce) and bastnaesite associated with “metaloparite” and TiO2 (anatase?) comprise a replacement assemblage after primary loparite. The typical replacement pattern includes a loparite core with locally developed “metaloparite”, surrounded by a bastnaesite-anatase intermediate zone and an ancylite rim. Fluorapatite is rare, and has very high Sr, Na and REE contents, up to 21.4, 2.6 and 12.9 wt.% oxides, respectively. Compositionally, this mineral corresponds to the solid solution series between fluorapatite and belovite-(Ce). At this stage, hollandite-group minerals became a minor host for Ba; they demonstrate the evolutionary trend from priderite (5.2 wt. % K2O, 7.4 wt. % BaO) to Ba-Fe hollandite (19.2–21.4 wt. % BaO). Thus, the evolution of Sr, REE, Ba and Nb mineralization was a complex, multi-stage process, and involved primary crystallization, re-equilibration phenomena and late-stage deuteric alteration.
Read full abstract