The generic structure and some peculiarities of real rank one solvable Lie algebras possessing a maximal torus of derivations with the eigenvalue spectrum spec ( t ) = 1 , k , k + 1 , ⋯ , n + k − 3 , n + 2 k − 3 for k ≥ 2 are analyzed, with special emphasis on the resulting Lie algebras for which the second Chevalley cohomology space vanishes. From the detailed inspection of the values k ≤ 5 , some series of cohomologically rigid algebras for arbitrary values of k are determined.