This study presents a comprehensive experimental investigation conducted on a CIGS-based solar cell incorporating a ZnS buffer layer. The primary objective was to determine key parameters of the CIGS/ZnS heterojunction, including parasitic resistances (Rs and Rsh), ideality factor (n), and barrier height (ϕB), using experimental current-voltage (I-V) characteristics over a temperature range of 150 K to 300 K under dark conditions. The heterojunction was modelled using a single-diode electrical circuit that accounted for parasitic resistances. Two methods were employed for parameter determination: direct analysis of the (I-V) curves and Cheung's method. Additionally, the charge transport mechanism within the heterojunction is investigated and discussed. Furthermore, the performance of the Al:ZnO/i:ZnO/ZnS/CIGS/Mo solar cell was assessed using the SCAPS-1D simulator, demonstrating an initial solar energy conversion efficiency of 15.01 %. To enhance this efficiency, a hole transport layer (HTL) was integrated between the back electrode and the absorber layer. Extensive studies were conducted to optimize the thickness and doping density of the HTL, including a comparative analysis of different materials used as HTLs. These optimizations resulted in a significant increase in conversion efficiency, reaching up to 28.68 %.
Read full abstract