Abstract

Ultrathin MoO3 semiconductor nanostructures have garnered significant interest as a promising nanomaterial for transparent nano- and optoelectronics, owing to their exceptional reactivity. Due to the shortage of knowledge about the electronic and optoelectronic properties of MoO3/n-Si via an ALD system of few nanometers, we utilized the preparation of an ultrathin MoO3 film at temperatures of 100, 150, 200, and 250 °C. The effect of the depositing temperatures on using bis(tbutylimido)bis(dimethylamino)molybdenum (VI) as a molybdenum source for highly stable UV photodetectors were reported. The ON-OFF and the photodetector dynamic behaviors of these samples under different applied voltages of 0, 0.5, 1, 2, 3, 4, and 5 V were collected. This study shows that the ultrasmooth and homogenous films of less than a 0.30 nm roughness deposited at 200 °C were used efficiently for high-performance UV photodetector behaviors with a high sheet carrier concentration of 7.6 × 1010 cm-2 and external quantum efficiency of 1.72 × 1011. The electronic parameters were analyzed based on thermionic emission theory, where Cheung and Nord's methods were utilized to determine the photodetector electronic parameters, such as the ideality factor (n), barrier height (Φ0), and series resistance (Rs). The n-factor values were higher in the low voltage region of the I-V diagram, potentially due to series resistance causing a voltage drop across the interfacial thin film and charge accumulation at the interface states between the MoO3 and Si surfaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.