Let 𝔸 be an idempotent algebra on a finite domain. By mediating between results of Chen [ 1 ] and Zhuk [ 2 ], we argue that if 𝔸 satisfies the polynomially generated powers property (PGP) and ℬ is a constraint language invariant under 𝔸 (i.e., in Inv(𝔸)), then QCSP ℬ is in NP. In doing this, we study the special forms of PGP, switchability, and collapsibility, in detail, both algebraically and logically, addressing various questions such as decidability on the way. We then prove a complexity-theoretic converse in the case of infinite constraint languages encoded in propositional logic, that if Inv}(𝔸) satisfies the exponentially generated powers property (EGP), then QCSP (Inv(𝔸)) is co-NP-hard. Since Zhuk proved that only PGP and EGP are possible, we derive a full dichotomy for the QCSP, justifying what we term the Revised Chen Conjecture . This result becomes more significant now that the original Chen Conjecture (see [ 3 ]) is known to be false [ 4 ]. Switchability was introduced by Chen [ 1 ] as a generalization of the already-known collapsibility [ 5 ]. There, an algebra 𝔸 :=({ 0,1,2}; r ) was given that is switchable and not collapsible. We prove that, for all finite subsets Δ of Inv (𝔸 A), Pol (Δ) is collapsible. The significance of this is that, for QCSP on finite structures, it is still possible all QCSP tractability (in NP) explained by switchability is already explained by collapsibility. At least, no counterexample is known to this.
Read full abstract