Abstract
The aim of this paper is to prove that there exists no cohomogeneity one $G-$invariant proper biharmonic hypersurface into the Euclidean space ${\mathbb R}^n$, where $G$ denotes a tranformation group which acts on ${\mathbb R}^n$ by isometries, with codimension two principal orbits. This result may be considered in the context of the Chen conjecture, since this family of hypersurfaces includes examples with up to seven distinct principal curvatures. The paper uses the methods of equivariant differential geometry. In particular, the technique of proof provides a unified treatment for all these $G-$actions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.