Neoadjuvant chemotherapy, particularly the use of platinum-based compounds and taxanes, is pivotal in the treatment of epithelial-derived tumors, such as cervical cancer and esophageal squamous cell carcinoma (ESCC); however, resistance remains a significant challenge. Utilizing Mendelian randomization (MR) with pharmacogenomics offers a novel approach to understanding the genetic underpinnings of drug responses, thereby aiding in personalized treatment. Single-cell RNA sequencing (scRNA-seq) analysis revealed a shared cellular subpopulation of CD8+T effector memory (CD8+TEM) cells that are pivotal in mediating chemotherapy resistance in ESCC and cervical cancer. A two-sample approach was employed for MR using data from genome-wide association studies, focusing on single nucleotide polymorphisms (SNPs) linked to CD8+TEM cell expression. The SNPs were carefully selected, and statistical models, including the Wald ratio and inverse variance weighted methods, were used for robust causal effect estimation. These were supplemented by MR-Egger and weighted median analyses to address pleiotropy and variant heterogeneity. 3-(4,5-Dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide (MTT) and immunohistochemistry assays were used to verify the relationship between the gene and drug sensitivity. Increased proportion of CD8+TEM cells were observed in resistant samples. MR identified IL32, SPOCK1, and TRBC2 as key genes associated with resistance to cisplatin, carboplatin, and paclitaxel, respectively. These findings were validated across various cohorts and underscored the role of CD8+TEM cells in drug responsiveness. The results of the MTT and immunohistochemistry assays confirmed the MR findings. Our study highlights the significant role of CD8+TEM cells in the chemoresistance of ESCC and cervical cancer and identified three genetic markers crucial for resistance to common chemotherapeutic agents. These findings suggest potential pathways for developing personalized treatment strategies, offering clinically relevant insights that could enhance therapeutic efficacy and help overcome drug resistance in patients with ESCC or cervical cancer.
Read full abstract