Our previous study found increased zinc finger protein 139 (ZNF139) expression in gastric cancer (GC) cells. Purpose of the study is to further clarify the role and mechanism of ZNF139 in multi-drug resistance (MDR) of GC cells. MTT assay, RT-PCR, Western blotting were employed to detect susceptibility of GC cells to chemotherapeutic agents (5-FU, L-OHP) in vitro, and expressions of ZNF139 and MDR associated genes MDR1/P-gp, MRP1, Bcl-2, Bax were also detected. siRNA specific to ZNF139 was transfected into MKN28 cells, then chemosensitivity of GC cells as well as changes of ZNF139 and MDR associated genes were detected. It's found the inhibition rate of 5-FU, L-OHP to well-differentiated GC tissues and cell line was lower than that in the poorly differentiated tissues and cell line; expressions of ZNF139 and MDR1/P-gp, MRP1 and Bcl-2 in well-differentiated GC tissues and cell line MKN28 were higher, while Bax expression was lower. After ZNF139-siRNA was transfected into MKN28, ZNF139 expression in GC cells was inhibited by 90%; inhibition rate of 5-FU, L-OHP to tumor cells increased, and expressions of MDR1/P-gp, MRP1 and Bcl-2 were down-regulated, while Bax was up-regulated. ZNF139 was involved in GC MDR by promoting expressions of MDR1/P-gp, MRP1 and Bcl-2 and inhibiting Bax simultaneously.
Read full abstract