The nuclear magnetic resonance (NMR) technique of chemically induced dynamic nuclear polarization (CIDNP) has been used to study the reactions between photoexcited flavins and a wide variety of nucleotides, dinucleotides, and oligonucleotides. The greatest emphasis is placed on the purine nucleosides adenosine (A), inosine (I), and guanosine (G), particularly guanosine. The presence of G suppresses the CIDNP effect for A, although A by itself shows very strong CIDNP. Very intense CIDNP signals are observed for the H8 proton in G-containing mononucleotides, but no nuclear polarization is detected for the sugar H1' proton. In contrast, both H8 and H1' protons exhibit CIDNP for G in a wide range of dinucleotides and higher oligonucleotides. Several possible mechanisms are analyzed to explain the H1' polarization, and it is concluded that the sugar H1' proton probably obtains spin density through interaction with guanine nitrogen 3. The proximity of the H1' proton to N3 depends explicity on the glycosidic torsion angle, chi. CIDNP studies of several model compounds in which chi is fixed are consistent with this suggestion. CIDNP for the self-complementary tetramer ApGpCpU was studied as a function of temperature. Strong CIDNP from G is only observed at temperatures above the double-strand melting temperature,more » suggesting that CIDNP is only detected in single-stranded regions, where the base is accessible to solvent. The use of brominated riboflavin as the photoreagent in place of riboflavin is shown to selectively invert the sign of A, I, and 1-methylguanosine polarization, providing a convenient method for distinguishing the NMR spectra of these residues in complex oligonucleotides.« less