The present study investigates the seasonal variations in leaf ecophysiological traits and strategies employed by co-occurring evergreen and deciduous tree species within a white oak forest (Quercus leucotrichophora A. Camus) ecosystem in the central Himalaya. Seasonal variations in physiological, morphological, and chemical traits were observed from leaf initiation until senescence in co-occurring deciduous and evergreen tree species. We compared various parameters, including net photosynthetic capacity (Aarea and Amass), leaf stomatal conductance (gswarea and gswmass), transpiration rate (Earea and Emass), specific leaf area (SLA), mid-day water potential (Ψmd), leaf nitrogen (N) and phosphorus (P) concentration, leaf total chlorophyll concentration, photosynthetic nitrogen- and phosphorus-use efficiency (PNUE and PPUE), and water use efficiency (WUE) across four evergreen and four deciduous tree species. Our findings reveal that evergreen and deciduous trees exhibit divergent strategies in coping with seasonal changes, which are crucial for their survival and growth. Deciduous trees consistently exhibited significantly higher photosynthetic rates, transpiration rates, mass-based N and P concentrations (Nmass and Pmass), mass-based chlorophyll concentration (Chlmass), SLA, and leaf Ψmd, while maintaining lower leaf structural investments throughout the year compared to evergreen trees. These findings indicate that deciduous trees achieve greater assimilation rates per unit mass and higher nutrient-use efficiency. Physiological, morphological, and leaf N and P concentrations were higher in the summer (fully expanded leaf) than in the fall (senesced leaf). These insights provide valuable contributions to our understanding of tree species coexistence and their ecological roles in temperate forest ecosystems, with implications for forest management and conservation in the Himalayan region.