Short fibers of Agave Americana (AA) was extracted from its plant leaf, was chemically treated with Ac2O, HCOOH, H2O2, KMnO4 and NaOH, and then characterized by Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), thermo-gravimetric/differential thermo-gravimetric (TGA/DTG), and field emission-scanning electron microscopy (FE-SEM). PVA stabilized copper nanoparticles from chemical reduction method was characterized using field emission-scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDAX), powder X-ray diffraction (PXRD), Dynamic light scattering analysis (DLS), UV–visible absorption spectroscopy, Fourier Transform infrared (FT-IR) spectroscopy and Thermogravimetric analysis/differential thermogravimetry (TGA/DTG). Bio-composites (AA + Polyester Resin (PE) and hybrid nano bio-composites (AA + Polyester Resin (PE) + Cu) were prepared from the untreated and treated AA fibers and further characterized. The synergistic effect of chemical treatment on morphological (SEM), thermal (TGA/DTG), mechanical properties (flexural, tensile, impact and compressive strength) followed by % water absorption were examined. The average surface roughness values (Ra) of chemical treated fiber was identified to be in decreasing manner along with compression strength of biocomposite in the order of untreated (10.74 μm, 44.01 MPa) > NaOH (8.55 μm, 45.07 MPa) > HCOOH (3.49 μm, 24.10 MPa) Ac2O (3.24 μm, 22.10 MPa) > H2O2 (2.51um, 17.9 MPa) > KMnO4 (1.52 μm, 15.1 MPa) treated fibers. Subsequently, the addition of 2s@PVA led to reverse the order namely, the compressive strength of the bionanocomposites were Untreated (10.74 μm, 9.0 MPa) < NaOH (8.55 μm, 0.1 MPa) < HCOOH (3.49 μm, 3.6 MPa) < Ac2O (3.24 μm, 7.6 MPa) < H2O2 (2.51um, 13.3 MPa) < KMnO4 (1.52 μm, 44.1 MPa) treated fibers. Similarly, the biocomposite where the fibres were treated with NaOH, HCOOH were more rough and had, good interconnection between fiber/PE matrix along with enhanced mechanical properties. On addition of nanobiocomposite, only KMnO4 treated fiber composite possed significant mechanical properties. Therefore, mixing CuNPs@PVA with KMnO4 treated fibers led to significant boost to the mechanical properties and minimised the % water absorption properties when compared to the untreated AA/PE biocomposites. The KMnO4 treatment of the AA fiber and addition of copper nanoparticles caused the enhancement of thermal properties, tensile strength and flexural strength. But, these nanobiocomposites were observed to have low impact strength; while, H2O2 treated nanobiocomposites had highest impact strength. The chemical treatment of the AA fiber with NaOH, Ac2O and KMnO4 developed the water resistance of the respective biocomposites. All the nanobiocomposites with chemically treated AA fibers (except Ac2O) were found to have high water resistance. So, they can be used in automotive industry for non-structural applications.
Read full abstract