Natural products encompass a diverse range of compounds with high impact applications in consumer care, agriculture and most notably, therapeutics. However, despite the expansive chemical repertoire indicated in genomic information of microbes, only a small subset can be obtained under laboratory conditions. To increase accessible chemical space and realize Nature’s full chemical potential, a multi-pronged genetic- and cultivation-based strategy has been employed to activate and upregulate natural product biosyntheses in native and heterologous strains. This data descriptor documents a characterized collection of 2,138 liquid chromatography-tandem mass spectrometry (LC/MS-MS) spectra of fermentation extracts from 54 native actinobacterial strains collected from soil and marine environments in Singapore, and their 459 activated mutants in 3 to 5 media. A total of 743 unique metabolites have been identified, with the activated mutants demonstrating an approximately 2-fold expansion in accessible chemical space over wild type strains. Interrogating this expanded chemical diversity with cheminformatic tools can provide direction for the discovery of novel natural products with desirable functional activity.
Read full abstract