Upcycling waste polyethylene terephthalate (PET) bottles has attracted intensive research interests. This simultaneously alleviates plastic pollution and achieves a waste-to-resource strategy. Waste PET water bottles were used to fabricate value-added activated carbon (AC) electrodes for capacitive deionization (CDI). The KOH activation temperature (greater than 700 °C) prominently affected the physi-chemical properties and desalination performance of PET-derived activated carbons (PET-AC). Profiting from a large Brunauer–Emmet–Teller specific surface area (1448 m2 g−1) with a good mesoporous structure (the ratio of the mesopore volume to the total pore volume was 41.3%), PET-AC-1000 (activated at 1000 °C) possessed a huge specific capacitance of 108 F g−1 for capacitive ion storage. Moreover, when utilized as the electrode material in single-pass CDI, PET-AC-1000 exhibited a maximum electrosorption capacity of 10.82 ± 0.11 mg g−1 and a low level of energy consumption (0.07 kWh mol−1), associated with good electrochemical charging-discharging cyclic stability. The results provide a promising facile approach to tackle the challenge of plastic pollution and promote the advancement of electrode materials for economic affordable and energy-efficient electrochemical desalination process, which meets the United Nations (UN) sustainable development goals (SDGs).