Extraction of hemicelluloses prior to pulping and conversion of the extracted hemicelluloses to other bioproducts could provide additional revenue to traditional pulp and paper industries. The effect of hemicelluloses pre-extraction with a hydrothermal (HT) process on Pinus radiata chemimechanical pulp (CMP) properties was investigated in this study. The HT extraction resulted in a release of 7% to 58% of the initial amount of hemicelluloses from the wood. The extraction yield increased with temperature and extraction time. This hemicellulosic fraction was in the form of low molar mass oligomers with molecular weights varying from 1.5 to 100 kDa. Compared with the control (unextracted) CMP pulp, the HT pre-extraction significantly reduced the refining energy to obtain a given fibrillation degree (freeness). The pulp yield with the HT/CMP process was in the range of 56% to 75%. Fiber properties of the pulps from pre-extracted wood, such as fiber length, were reduced, while increases in fiber width, fines content, fiber coarseness, and kink index were observed in comparison with the control pulps. The strength properties of CMP pulps decreased with increasing amounts of hemicellulose removal during the stage prior to pulping.