Disease causing phytopathogens are responsible for an approximately 15% reduction in worldwide food production. Therefore, for efficient management of plant diseases, a systematic understanding of the harmful impacts of pathogens on economic crops is essential. The practice of sustainable agriculture aims at the development of a system that supports the growth of plants but simultaneously induces adverse effects on the existence of pathogens. Therefore, the current research was designed to monitor the seed priming effects of Trichoderma virens (as Biocontrol Agent, BCA) and Jasmonic acid (a chemical inducer) in tomato plants infected with two devastating soil-borne pathogens viz., Fusarium oxysporum lycopersici (Fol) and Rhizoctonia solani. Application of these agents in infected plants alone or together leads to the establishment of various disease-suppressive mechanisms in the host plants as observed in the form of enhanced seedling vigour index, percentage germination, morphological growth, and a substantial decrease in the percentage of disease incidence. Furthermore, pathogen inoculation in diseased plants enhances the content of two compatible osmolytes i.e., proline and glycine betaine which themselves serve as defensive molecules by acting as osmoprotectants and signalling molecules in the induction of various defence-related pathways in the stressed plants. Our study provides important insights into the effectiveness of T. virens and JA in the amelioration of pathogen-induced damage in the host plants. The inferences obtained from this research highlight the better efficiency of combined applications of T. virens and JA against these two soil-borne pathogens.
Read full abstract