In the current age of chemical science, chemical graph theory has significantly advanced our understanding of the characteristics of chemical compounds. To simulate the mathematical, chemical, and physical aspects of networks, a topological index, a numerical measure obtained from the graph of a chemical network, employed. Recent work has explored the topological properties of boron oxide using chemical graph theory. In this work, we conduct a Pearson correlation analysis of boron oxide to assess the correlations between the Van and S indices and entropy metrics. We analyze the Pearson correlation coefficients between the entropy values and the calculated indices using a heatmap. In this article, a significant positive correlation between the Van, and S indices, and entropy values, which is represented by the heatmap of the strong linear correlations. To avoid duplication, a dimensionality reduction technique should be used for highly connected variables. Additionally, this study gives a detailed explanation of the link between the indices and entropy, which will form the basis of further statistical investigations.
Read full abstract