Abstract
A new area of applied chemistry called chemical graph theory uses combinatorial techniques to explain the complex interactions between atoms and bonds in chemical systems. This work investigates the use of edge partitions to decipher molecular connection patterns. The main goal is to use topological indices that capture important topological features to create a connection between the thermodynamic properties and structural characteristics of chemical molecules. We specifically examine the complex web of atoms and links that make up the Fe phthalocyanine chemical graph. Moreover, our study demonstrates a relationship between the calculated topological indices and the thermodynamic properties of Fe phthalocyanine (Phthalocyanine Iron (II)). This work offers insight into the thermodynamic consequences of molecule structures. It advances the subject of chemical graph theory, providing a useful perspective for future applications in catalysis and materials science.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.