Covalently attached, soft poly(vinyl alcohol) (PVA) hydrogel films containing silver particles were prepared on solid biodegradable poly(l-lactic acid) (PLLA) samples by a multistep procedure involving oxygen plasma treatment, UV-initiated graft polymerization, and chemical grafting methods. The modification steps were followed and verified using attenuated total reflection infrared spectroscopy and X-ray photoelectron spectroscopy. 2-Hydroxyethyl methacrylate (HEMA) was graft polymerized from the surface of oxygen plasma-treated PLLA film samples and the alcohol functionality in the grafted polyHEMA chains was oxidized using pyridinium dichromate to obtain an aldehyde-rich surface. PVA was then grafted onto this surface using acid catalysis (acetal formation). The "freeze/thaw method" was used to form a PVA hydrogel layer that incorporated the covalently grafted PVA chains in the physically cross-linked gel. This composite film (PLLA-PVA(gel)) was doped with silver ions, which were reduced to silver using NaBH(4). Scanning electron microscopy of cross sections of PLLA-PVA(gel) indicates robust attachment of the PVA hydrogel layer to the PLLA film. PLLA-PVA(gel/Ag(0)) film samples exhibit both antibacterial and reduced cell adhesion properties due to the antibacterial properties of silver nanoparticles and high water content, respectively. This method provides a route to mechanically sound biodegradable materials with tunable soft material surface properties. Potential applications in tissue engineering and biomedical devices are envisioned.