The world's phosphorus (P) resources are gradually depleting. Sewage sludge is an important secondary P resource, and sludge-derived biochar for land use is an effective way to achieve P recovery. However, P in biochar synthesized by direct pyrolysis of sludge usually shows comparatively low bioavailability. In this study, biomass ash from different types of straw was used as an additive for co-pyrolysis with sludge. The distribution of different P fractions in the obtained co-pyrolyzed biochar was investigated. The P bioavailability of the co-pyrolyzed biochar was comprehensively evaluated by three methods, including chemical extraction, diffusive gradients in thin films (DGT) technology and pot experiments. The results indicate that the bioavailable P in co-pyrolyzed biochar is significantly positively correlated with the contents of K, Ca, and Mg elements in straw ash, which facilitate the transformation of P in sludge into forms that are more easily utilized by plants, including monetite (CaHPO4), hydroxyapatite (Ca5(PO4)3OH) and pyrocoproite (K2MgP2O7). Moreover, pot experiments show that the P contents in ryegrass shoots and roots cultivated in co-pyrolyzed biochar-added soils increased by 11.98–114.97 % and 28.90–69.70 %, respectively, compared to the control soil. The DGT technology could better reflect the uptake of P by plants with a Pearson correlation coefficient as high as 0.94. This study provides references for P resource recovery, and the collaborative reutilization of sewage sludge and straw ash.
Read full abstract