The physical and technical development of chemical-exchange-saturation-transfer (CEST) magnetic resonance imaging (MRI) using clinical 3 T MRI was explored with the goal of mapping asparagine (Asn), gamma-aminobutyric acid (GABA), glutamate (Glu), glycine (Gly), and myoinositol (MI), which exist in the brain. Phantoms with nine different conditions at concentrations of 10, 30, and 50 mM and pH values of 5.6, 6.2, and 7.4 were prepared for the five target molecules to evaluate the dependence of the CEST effect in the concentration, the pH, and the amplitude of the applied radiofrequency field B1. CEST images in the offset frequency range of ±6 parts per million (ppm) were acquired using a pulsed radio-frequency saturation scheme with a clinical 3 T MRI system. A voxel-based main magnetic field B0 inhomogeneity correction, where B0 is the center frequency offset at zero ppm, was performed by using the spline interpolation method to fit the full Z-spectrum to estimate the center frequency. A voxel-based CEST asymmetry map was calculated to evaluate amide (-NH), amine (-NH2), and hydroxyl (-OH) groups for the five target molecules. The CEST effect for Glu, GABA, and Gly clearly increased with increasing concentrations. The CEST effect for MI was minimal, with no noticeable differences at different concentrations. The CEST effect for Glu and Gly increased with increasing acidity. The highest CEST asymmetry for GABA was observed at pH 6.2. The CEST effect for Glu, GABA, and Gly increased with increasing B1 amplitude. For all target molecules, the CEST effect for the human 3 T MRI system increased with increasing concentration and B1 amplitude, but varied with pH, depending on the characteristics of the molecules. The CEST effect for MI may be not suitable with clinical MRI systems. These results show that CEST imaging in the brain with the amine protons by using 3 T MRI is possible for several neuronal diseases.