An accidental or intentional contamination event can raise health and sociopolitical concerns, erode public trust, and affect the operation of water distribution systems. In this regard, emergency management plans are required to describe the necessary measures in order to deal with a threat. This study was carried out to investigate the best ways to manage intrusion in a water distribution network. In this research, the optimal management approach to deal with chemical contamination in a water distribution network was examined under three scenarios using the particle swarm optimization method. In each scenario, three management solutions were used to manage the contamination, including closing the pipe, opening the fire hydrant, and using a combination of pipe closure and fire hydrant opening. Contamination risk impact on consumers' health was assessed in the network's emergency status and after implementation of the best pollution management scenarios. The results showed that in the benchmark network, pipe closure was slightly more successful than opening of the fire hydrant valve. In pollution management of a real network, pipe closure was less effective than the hydrant opening in all scenarios. Generally, all applied scenarios were successful in reducing the contamination risk among the exposed people, so that carcinogenic and non-carcinogenic risks reduced by 100% in all scenarios compared to the non-management state.