Artemisia annua L. is distributed throughout the world and it is an important medicinal plant in Korea to treat various human diseases. Recently, A. annua has also been considered to be an effective ethnobotanical drug against COVID-19. A. annua contains an appreciable amount of essential oil with different biological properties. However, the composition of essential oils in aromatic plants can be varied depending on several factors, including geographic, genetic, ecological, etc. Hence, the present study aimed to investigate the chemical diversity of essential oils of Korean A. annua collected from different locations in Korea by multivariate analysis. For this purpose, the seeds of A. annua were collected from 112 different locations in Korea and were grown under the same environmental conditions. Except for nine individuals which decayed during the cultivation, essential oils were isolated from the aerial parts of 103 A. annua individuals (AEOs) using the steam distillation extraction method, and their chemical compositions were determined by GC-MS analysis. Furthermore, a multivariate analysis was performed to distinguish the difference between 103 individuals of A. annua based on their essential oil compositions. The yield of A. annua essential oils ranged from 0.04 to 1.09% (v/w). Based on the GC-MS data, A. annua individuals were grouped into six chemotypes such as artemisia ketone, camphor, β-cubebene, eucalyptol, α-pinene, and β-selinene. The multivariate analysis results revealed that Korean A. annua could be largely grouped into three clusters such as artemisia ketone, eucalyptol, and β-selinene. Among 35 components selected for principal component analysis (PCA), PC1, PC2, and PC3 accounted for 82.55%, 8.74%, and 3.62%, respectively. Although all individuals of A. annua were cultivated under the same environmental conditions, there is an intraspecific chemical diversity that exists within Korean native species.
Read full abstract