Since the Qin terracotta warriors were unearthed, polyamide 650 cross-linked E-44 epoxy resin binder has been employed to bond and restore them. In this paper, the chemical aging of the binders service in indoor natural environment during the past 30 years in the terracotta warriors was studied by means of infrared spectroscopy, X-ray photoelectron spectroscopy and thermogravimetric analysis. The results indicated that the binders did not emerge the characteristic peak of carbonyl stretching vibration at 1700 cm−1 in the IR spectra of all determined binders, and their thermal decomposition curves did not emerge any abnormal changes, and the thermal decomposition mainly occurred above 300 °C. There are evident ceramic grains attached to the surface of the binders being peeled off for sampling. These results that the binders service in the Qin terracotta warriors did not exhibit an observable chemical aging and still has strong adhesion. Generally, discrepancies were observed between natural aging and accelerated artificial aging due to the ineffectiveness of the latter to reproduce the effects of complex weather conditions. Compared to artificially accelerated aging, the evaluation results in a long-term natural aging of the binder which is used for restoration of the life-size Qin terracotta warriors, providing in the present investigation, are more reliable in terms of predicting the safety of restored terracotta warriors.