The amount, distribution, size and chemical composition of non-metallic inclusions have a direct influence on steel properties. By controlling size and chemical composition of these inclusions, it is possible to get a product with good quality. The identification of the nature and the control of inclusion formation are very important for steel cleanness. The behavior of these inclusions is predictable, in some extent, by the determination of the chemical composition of non-metallic phases that form such inclusions. With the objective of studying the chemical composition, the size and the distribution of such inclusions, samples of aluminum and silicon killed low carbon steels were collected in a national steel industry in the secondary refining and continuous casting stages. These samples were analyzed in the scanning electron microscope (SEM) coupled to an energy dispersive analysis system (EDS). From the results, it was possible to evaluate the nature of inclusions and to analyze the effectiveness of the refining process in the reduction of the number and area fraction of the inclusions. It was also possible to verify that the inclusions that remained after treatment, are less damage both to the steel properties as to the continuous casting process (clogging of the submerged valve).
Read full abstract