The combination of immunotherapy and chemoradiotherapy has widely used for patients with esophageal squamous cell carcinoma (ESCC) and induced treatment-related adverse effects, particularly immune checkpoint inhibitor-related pneumonitis (CIP) and radiation pneumonitis (RP). The aim of this study is to differentiate between CIP and RP by the CT radiomics and clinical or radiological parameters. A total of 76 ESCC patients with pneumonitis were enrolled in this retrospective study and divided into training dataset (n = 53) and validation dataset (n = 23). A total of 837 radiomics features were extracted from regions of interest (ROIs) based on the lung parenchyma window of CT images. A radiomics signature was constructed on the basis of the predictive features by the least absolute shrinkage and selection operator (LASSO). A logistic regression was applied to develop radiomics nomogram. Receiver operating characteristics (ROC) curve and area under the curve (AUC) were applied to evaluate the performance of pneumonitis etiology identification. No significant difference was detected between training dataset and validation dataset. The radiomics signature which was made up of four radiomics features shown a favorable performance on differentiating between CIP and RP with the α-binormal-based and empirical AUC = 0.831 and 0.843. Patients with RP had a close relationship with location (p = 0.003) and shape of lesions (p = 0.002). The nomogram that combined with radiomics signature and clinical factors improved the classifying performance on discrimination in the training dataset (AUCαbin = 0.963 and AUCemp = 0.964). The results were verified in the validation dataset with AUC = 0.967 and 0.964. CT-based radiomics features have potential values for differentiating between patients with CIP and RP. Addition of bilateral changes and sharp border produced superior model performance on classifying, which could be a useful method to improve related clinical decision-making.
Read full abstract